翻訳と辞書
Words near each other
・ Lyapis Trubetskoy
・ Lyappa arm
・ Lyapunov
・ Lyapunov (crater)
・ Lyapunov equation
・ Lyapunov exponent
・ Lyapunov fractal
・ Lyapunov function
・ Lyapunov optimization
・ Lyapunov redesign
・ Lyapunov stability
・ Lyapunov theorem
・ Lyapunov time
・ Lyapunov vector
・ Lyapunov–Malkin theorem
Lyapunov–Schmidt reduction
・ LYAR
・ Lyari
・ Lyari Development Authority
・ Lyari Expressway
・ Lyari Expressway Resettlement Project
・ Lyari River
・ Lyari Town
・ Lyas
・ Lyasan Utiasheva
・ Lyase
・ Lyase language
・ Lyaskovets
・ Lyaskovets (village)
・ Lyaskovets Municipality


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lyapunov–Schmidt reduction : ウィキペディア英語版
Lyapunov–Schmidt reduction
In mathematics, the Lyapunov–Schmidt reduction or Lyapunov–Schmidt construction is used to study solutions to nonlinear equations in the case when the implicit function theorem does not work. It permits the reduction of infinite-dimensional equations in Banach spaces to finite-dimensional equations. It is named after Aleksandr Lyapunov and Erhard Schmidt.
==Problem setup==
Let
: f(x,\lambda)=0 \,
be the given nonlinear equation, X,\Lambda, and Y are
Banach spaces (\Lambda is the parameter space). f(x,\lambda) is the
C^p -map from a neighborhood of some point (x_0,\lambda_0)\in X\times \Lambda to
Y and the equation is satisfied at this point
: f(x_0,\lambda_0)=0.
For the case when the linear operator f_x(x,\lambda) is invertible, the implicit function theorem assures that there exists
a solution x(\lambda) satisfying the equation f(x(\lambda),\lambda)=0 at least locally close to \lambda_0 .
In the opposite case, when the linear operator f_x(x,\lambda) is non-invertible, the Lyapunov–Schmidt reduction can be applied in the following
way.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lyapunov–Schmidt reduction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.